Management induced changes of soil organic carbon on globalcroplands

2020 
Abstract. Soil organic carbon (SOC) is one of the largest terrestrial carbon stocks on Earth. The first meter of the Earths soils profile stores three times as much carbon as the vegetation and twice the amount of C in the atmosphere. SOC has been depleted by anthropogenic land cover change and agricultural management. However, the latter has so far not been well represented in global carbon stock assessments. While SOC models often simulate detailed biochemical processes that lead to the accumulation and decay of SOC, the management decisions driving these biophysical processes are still little investigated at the global scale. Here we develop a spatial explicit data set for agricultural management on cropland, considering crop production levels, residue returning rates, manure application, and the adoption of irrigation and tillage practices. We combine it with the IPCC Tier 2 steady-state soil model to create a half-degree resolution data set of SOC stocks and SOC stock changes for the first 30 cm of mineral soils. We estimate that due to arable farming, soils have lost around 26 GtC relative to a counterfactual natural state in 1975. Yet, within the period 1975–2010 this SOC debt has been decreasing again by a net quantity of 4 Gt SOC, which can be mainly traced back to an increased input of C in crop residues due to higher crop productivity. We also find that SOC is very sensitive to management decisions such as residue returning indicating the necessity to incorporate better management data in soil model simulations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []