A hybrid volumetric dose verification method for single‐isocenter multiple‐target cranial SRS

2018 
A commercial semi-empirical volumetric dose verification system (PerFraction [PF], Sun Nuclear Corp.) extracts multi-leaf collimator positions from the electronic portal imaging device movies collected during a pre-treatment run, while the rest of the delivered control point information is harvested from the accelerator log files. This combination is used to reconstruct dose on a patient CT dataset with a fast superposition/convolution algorithm. The method was validated for single-isocenter multi-target SRS VMAT treatments against absolute radiochromic film measurements in a cylindrical phantom. The targets ranged in size from 0.8 to 3.6 cm and in number from 3 to 10 per plan. A total of 17 films rotated at different angles around the cylinder axis were analyzed. Each of 27 total targets was intercepted by at least one film, and 2-4 different films were analyzed per plan. Film dose was always scaled to the ion chamber measurement in a high-dose, low-gradient area deliberately created at the isocenter. The planar dose agreement between PF and film using 3%(Global dose-difference normalization)/1 mm gamma analysis was on average 99.2 ± 1.1%. The point dose difference in the low-gradient area in the middle of every target was below 3%, while PF-reconstructed and film dose centroids for individual targets showed submillimeter agreement when measured on a well aligned accelerator. Volumetrically, all voxels in all plans agreed between PF and the primary treatment planning system at the 3%/1 mm level. With proper understanding of its advantages and shortcomings, the tool can be applied to patient-specific QA in routine radiosurgical clinical practice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    7
    Citations
    NaN
    KQI
    []