Mechanistic and therapeutic study of novel anti-tumor function of natural compound imperialine for treating non-small cell lung cancer

2020 
Abstract Ethnopharmacological relevance Bulbus Fritillaria cirrhosa D. Don (BFC) is a Chinese traditional herbal medicine that has long been used as an indispensable component in herbal prescriptions for bronchopulmonary diseases due to its well-established strong anti-inflammation and pulmonary harmonizing effects. Interestingly, there are few case reports in traditional Chinese medicine available where they found it to contribute in anti-tumor therapies. Imperialine is one of the most favored active substances extracted from BFC and has been widely recognized as an anti-inflammatory agent. Aim of the study The aim of the current work is to provide first-hand evidences both in vitro and in vivo showing that imperialine exerts anti-cancer effects against non-small cell lung cancer (NSCLC), and to explore the molecular mechanism of this anti-tumor activity. It is also necessary to examine its systemic toxicity, and to investigate how to develop strategies for feasible clinical translation of imperialine. Materials and methods To investigate anti-NSCLC efficacy of imperialine using both in vitro and in vivo methods where A549 cell line were chosen as in vitro model NSCLC cells and A549 tumor-bearing mouse model was constructed for in vivo study. The detailed underlying anti-cancer mechanism has been systematically explored for the first time through a comprehensive set of molecular biology methods mainly including immunohistochemistry, western blot and enzyme-linked immunosorbent assays. The toxicity profile of imperialine treatments were evaluated using healthy nude mice by examining hemogram and histopathology. An imperialine-loaded liposomal drug delivery system was developed using thin film hydration method to evaluate target specific delivery. Results The results showed that imperialine could suppress both NSCLC tumor and associated inflammation through an inflammation-cancer feedback loop in which NF-κB activity was dramatically inhibited by imperialine. The NSCLC-targeting liposomal system was successfully developed for targeted drug delivery. The developed platform could favorably enhance imperialine cellular uptake and in vivo accumulation at tumor sites, thus improving overall anti-tumor effect. The toxicity assays revealed imperialine treatments did not significantly disturb blood cell counts in mice or exert any significant damage to the main organs. Conclusions Imperialine exerts anti-cancer effects against NSCLC both in vitro and in vivo, and this previously unknown function is related to NF-κB centered inflammation-cancer feedback loop. Imperialine mediated anti-cancer activity is not through cytotoxicity and exhibit robust systemic safety. Furthermore, the liposome-based system we commenced would dramatically enhance therapeutic effects of imperialine while exhibiting extremely low side effects both on cellular and in NSCLC model. This work has identified imperialine as a promising novel anti-cancer compound and offered an efficient target-delivery solution that greatly facilitate practical use of imperialine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    66
    References
    7
    Citations
    NaN
    KQI
    []