(Garnet)-spinel peridotite xenoliths from Mega (Ethiopia): Evidence for rejuvenation and dynamic thinning of the lithosphere beneath the southern Main Ethiopian Rift
2017
Abstract Petrological and geothermobarometric data from (garnet)-spinel peridotite and pyroxenite xenoliths in Quaternary alkali-basalts at Mega (Sidamo region, Ethiopia) provide evidence for refertilization and thinning of the lower subcontinental lithospheric mantle (SCLM) during Tertiary rifting events in the southern Main Ethiopian Rift (MER). Samples of lherzolites, harzburgites, and olivine websterites contain spinel-pyroxene symplectites that were formed by garnet breakdown reactions. P-T equilibration conditions, in part calculated using the reconstructed garnet composition (pyrope), indicate the evolution of peridotites from the P-T conditions from the garnet stability field (2.9–2.2 GPa; 945–1025 °C), through garnet-spinel transition ( 2 O 3 ratios (1.42–4.46), and clinopyroxene contents (6–31 vol.%), reaching compositions more enriched than pyrolite. Clinopyroxene shows evident LREE, U, Th, and Sr enrichments, particularly in harzburgites. Geochemical data suggest heterogeneous refertilization of a refractory lower SCLM, induced by infiltration and migration through porous flow of silicate-carbonate melts. Metasomatic processes drove melt compositions towards low-viscosity highly-mobile C-O-H-rich melts, inducing cryptic and hydrous modal metasomatism in refractory peridotites. Heterogeneous refertilization of the SCLM beneath the southern MER seems to have been induced by upwelling of asthenospheric melts and/or by reactivation of ancient lithospheric metasomes. Rejuvenation processes could have rheologically weakened the base of SCLM through gravitational instabilities, and increased the extensional stresses, causing a destabilizing effect at the onset of the lithospheric thinning and Tertiary rifting.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
167
References
13
Citations
NaN
KQI