Identification of a novel metal binding protein, segon, in plasma of the eastern oyster, Crassostrea virginica.
2012
Abstract The second most abundant protein of eastern oyster plasma was purified, characterized and named segon. The 39 kDa protein as determined by SDS-PAGE under reducing conditions made up about 17% of plasma proteins and was found in extrapallial fluid. RACE reactions with primers designed from an EST sequence identified by BLAST search in GenBank using the N-terminal amino acid sequence obtained by Edman degradation of the purified protein, predicted a 997 bp complete cDNA that encoded 277 amino acids including a 16-residue signal peptide at the N-terminus. The deduced mature protein, composed of 261 amino acids, had a calculated molecular mass of 30,483.9 Da which was lower than the molecular mass of the purified protein measured by MALDI. The difference was likely due to post-translational modifications as the protein was predicted to have multiple sites for glycosylation and phosphorylation. The protein mRNA was detected in hemocytes by in situ hybridization and quantified in oyster tissues by RT-qPCR. Immunohistochemistry revealed that the protein was most abundant in tissues rich in blood sinuses like the gills and dorsally along the base of the mantle. ICP metal analysis of purified protein indicated highest association with zinc, calcium and iron and much greater metal content than in purified dominin, the most abundant protein of eastern oysters. Results of N-terminal and internal peptide sequencing of SDS-PAGE separated plasma proteins from Pacific, Suminoe and European flat oysters indicated that the second most abundant plasma protein is conserved. Several possible functions of segon in metal transport and detoxification, host defense, antioxidation and shell mineralization are proposed as they relate to its capacity to bind metals.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
66
References
13
Citations
NaN
KQI