Synthesis and characterization of TBIR with different fraction and chain sequence distribution and its influence on the properties of NR/TBIR/CB composites

2019 
Higher performance tire tread stocks with lower rolling resistance, higher abrasion, and fatigue resistance are urgent needs considering environmental protection, resource saving, and personal safety. In this paper, high trans-1,4-poly(butadiene-co-isoprene) copolymer rubbers (TBIR) consist of three main fractions containing trans-1,4-polyisoprene (TPI) blocks and/or trans-1,4-polybutadiene (TPB) blocks with varied sequence length and butadiene content, which have varied crystalline and degradation behavior. Blending 10 phr TBIR with natural rubber (NR) in a truck tire tread stock, the vulcanizated NR/TBIR/carbon black (CB) composites present improved modulus at 300% and abrasion resistance, higher fatigue resistance, lower rolling resistance, and heat buildup. The contribution of the TBIR fraction distribution on the properties of the improved fatigue resistance for NR/TBIR/CB composites are discussed. NR/TBIR-1/CB vulcanizate with satisfied comprehensive properties and acceptable tear strength reveals t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    11
    Citations
    NaN
    KQI
    []