Catalytic combustion of dry carbon monoxide by external power activation

2000 
Abstract The catalytic combustion of dry carbon monoxide and air in a planar stagnation-point flow over a platinum foil with external power is studied in this paper. The reduced heterogeneous kinetics are modelled with the dissociative adsorption of the molecular oxygen and the non-dissociative adsorption of CO, together with a surface reaction of the Langmuir–Hinshelwood type and the desorption reaction of the adsorbed product, CO 2 (s). The resulting governing equations have been numerically integrated and the whole S-shaped response curve has been obtained as a function of the mixture initial concentration. The critical conditions for the catalytic ignition and extinction are deduced using high activation energy asymptotics of the desorption kinetics of the most efficient adsorbed reactant, CO(s). We obtained a very good agreement between the numerical and asymptotic results for the ignition and extinction conditions. In general, the ignition process can be well modelled without reactant consumption, while extinction occurs in the partial diffusion-controlled regime, with a finite non-zero concentration of carbon monoxide close to the plate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    7
    Citations
    NaN
    KQI
    []