Relationships between Structure and Alkaline Stability of Imidazolium Cations for Fuel Cell Membrane Applications

2014 
Anion exchange membranes have substantial potential to be useful in methanol fuel cells due to the viability of non-noble metal electrocatalysts at high pH and increases in the oxidation rate of methanol in alkaline conditions. However, long-term stability of the cationic moiety has been an issue, and imidazoliums have recently attracted attention as candidates for stable cations. The prevailing strategy for increasing the stability of the imidazolium has involved adding sterically hindering groups at the 2 position. Surprisingly, the findings of this study show that steric hindrance is the least effective strategy for stabilizing imidazoliums. We propose that the most important stabilizing factor for an imidazolium is the ability to provide alternative, reversible deprotonation reactions with hydroxide and outline other structure–property relationships for imidazolium cations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    68
    Citations
    NaN
    KQI
    []