In Vivo 3-Dimensional Radiopharmaceutical-Excited Fluorescence Tomography

2017 
Abstract Cerenkov luminescence imaging can image radiopharmaceuticals using a high-sensitivity charge-coupled device camera. However, Cerenkov luminescence emitted from the radiopharmaceuticals is weak and has low penetration depth in biologic tissues, which severely limits the sensitivity and accuracy of Cerenkov luminescence imaging. This study presents 3-dimensional (3D) radiopharmaceutical-excited fluorescence tomography (REFT) using europium oxide (EO) nanoparticles, which enhances the Cerenkov luminescence signal intensity, improves the penetration depth, and obtains more accurate 3D distribution of radiopharmaceuticals. REFT with EO nanoparticles significantly improves accuracy of localization of radiopharmaceuticals and can precisely localize the tumor in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    26
    Citations
    NaN
    KQI
    []