Inhibitor of polyamine catabolism MDL72.527 restores the sensitivity to doxorubicin of monocytic leukemia Thp-1 cells infected with human cytomegalovirus

2019 
Abstract Leukemic cells from different patients exhibit different sensitivity to anticancer drugs including doxorubicin (DOX). Resistance to chemotherapy decreases efficacy of the treatment and promotes cancer recurrence and metastases. One of the approaches to overcome drug resistance includes E2F1-mediated regulation of the р73 protein that belongs to the р53 family. Its ΔNp73 isoform exhibits pro-oncogenic effects, and TAp73 – anti-oncogenic effects. Human cytomegalovirus (HCMV), often found in tumors, suppresses pro-apoptotic pathways and E2F1/p73 in particular. The activity of E2F1 and p73 transcription factors is linked to metabolism of biogenic polyamines. Therefore, it could be suggested that compounds that target polyamine-metabolizing enzymes can sensitize HCMV-infected hematological malignancies to doxorubicin. Here we report that HCMV infection of ТНР-1 monocytic leukemic cells considerably elevates E2F1 levels and shifts the balance between the р73 isoforms towards ΔNp73 leading to survival of DOX-treated leukemic cells. In contrast, MDL72.527, an inhibitor of polyamine catabolism, decreases ΔNp73/ТАр73 ratio and thus restores sensitivity of the cells to DOX. Our findings indicate the combination of doxorubicin and MDL72.527 may present a novel strategy for therapy of leukemia in patients with and without HCMV infection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    4
    Citations
    NaN
    KQI
    []