A Wrist-Worn Sensor-Derived Frailty Index Based on an Upper-Extremity Functional Test in Predicting Functional Mobility in Older Adults.

2021 
INTRODUCTION Preoperative frailty is an independent risk factor for postoperative complications across surgical specialties. Functional mobility such as gait, timed up and go (TUG), and 5 times sit-to-stand (5-STS) are popular preoperative frailty measurements but are not suitable for patients with severe mobility impairment. A wrist-worn sensor-derived frailty index based on an upper-extremity functional test (20-s repetitive elbow flexion-extension task; UEFI) was developed previously; however, its association with functional mobility remained unexplored. We aimed to investigate the predictive power of the UEFI in predicting functional mobility. METHODS We examined correlation between the UEFI and gait speed, TUG duration, and 5-STS duration in 100 older adults (≥ 65 years) using multivariate regression analysis. The UEFI was calculated using slowness, weakness, exhaustion, and flexibility of the sensor-based 20-s repetitive elbow flexion-extension task. RESULTS The UEFI was a significant predictor for gait speed and TUG duration and 5-STS duration (all R ≥ 0.60; all p < 0.001) with the variance (adjusted R2) of 35-37% for the dependent variables. The multivariate regression analysis revealed significant associations between the UEFI and gait speed (β = -0.84; 95% confidence interval [95% CI] = [-1.19, -0.50]; p < 0.001) and TUG duration (β = 16.2; 95% CI = [9.59, 22.8]; p < 0.001) and 5-STS duration (β = 33.3; 95% CI = [23.6, 43.2]; p < 0.001), found after accounting for confounding variables (e.g., age and fear of falling scale). CONCLUSIONS Our findings suggest that the UEFI can be performed with a wrist-worn sensor and has been validated with other established measures of preoperative frailty. The UEFI can be applied in a wide variety of patients, regardless of mobility limitations, in an outpatient setting.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []