MINIMIZING DECOMPOSITION OF VAPORIZED HYDROGEN PEROXIDE IN CLEAN GALVANIZED STEEL DUCTING: IMPLICATIONS FOR BIOLOGICAL DECONTAMINATION

2007 
This work examined the behavior of vaporous hydrogen peroxide (VHP) in clean, room-scale galvanized steel (GS) and polyvinylchloride-coated steel air ducts, to understand how it might be used to decontaminate larger ventilation systems. VHP injected into the GS duct decreased in concentration along the length of the duct, whereas VHP concentrations in the polyvinylchloride coated duct remained essentially constant, suggesting that VHP decomposed at the GS surface. However, decomposition was reduced at lower temperatures ({approx} 22 C) and higher flow rates ({approx} 80 actual cubic meter per hour). A computational fluid dynamics model incorporating reactive transport was used to estimate surface VHP concentrations where contamination is likely to reside, and also showed how bends encourage VHP decomposition. Use of G. stearothermophilus indicators, in conjunction with model estimates, indicated that a concentration-contact time of {approx} 100 mg/L H{sub 2}O{sub 2}(g){center_dot}min was required to achieve a 6 log reduction of indicator spores in clean GS duct, at 30 C. When VHP is selected for building decontamination, this work suggests the most efficacious strategy may be to decontaminate GS ducting separately from the rest of the building, as opposed to a single decontamination event in which the ventilation system is used to distributemore » VHP throughout the entire building.« less
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []