Meiosis-specific ZFP541 repressor complex promotes meiotic prophase exit during spermatogenesis

2021 
During spermatogenesis, meiosis is accompanied by robust alteration in gene expression and chromatin status. However, it remained elusive how meiotic transcriptional program is established to ensure completion of meiotic prophase. Here, we identified a novel protein complex consisting of germ-cell-specific zinc-finger protein ZFP541 and its interactor KCTD19 as the key transcriptional regulator for meiotic prophase exit. Our genetic study showed that ZFP541 and KCTD19 are co-expressed from pachytene onward and play an essential role in the completion of meiotic prophase program in the testis. Furthermore, our ChIP-seq and transcriptome analyses revealed that ZFP541 binds to and suppresses a broad range of genes whose function is associated with biological processes of transcriptional regulation and covalent chromatin modification. The present study demonstrated that germ-cell specific ZFP541-KCTD19 containing complex promotes meiotic prophase exit in males, and triggers reconstruction of the transcription network and chromatin organization leading to post-meiotic development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []