Dual-signal amplification electrochemical sensing for the sensitive detection of uranyl ion based on gold nanoparticles and hybridization chain reaction-assisted synthesis of silver nanoclusters.

2021 
Abstract Herein, a dual-signal amplification electrochemical sensing has been proposed for the ultrasensitive detection of uranyl ions (UO22+) by integration of gold nanoparticles (AuNPs) and hybridization chain reaction (HCR)-assisted synthesis of silver nanoclusters (AgNCs). In this sensing platform, AuNPs are used as an ideal signal amplification carrier, aiming at increasing the loads of UO22+-specific DNAzyme on the gold electrode. In the presence of UO22+, UO22+-specific DNAzyme can be activated, leading to the cleavage of substrate strands (S-DNA). Then, HCR is triggered to produce long dsDNA through hybridization the probe with the ssDNA on the electrode surface. As a result, an amplified electrochemical response can be detected by inserting a large amount of AgNCs generated in situ using dsDNA as template. Featured with amplification efficiency, good specificity and high sensitivity, the strategy could quantitatively detect UO22+ down to 6.2 pM with a linear calibration range from 20 pM to 5000 pM. The proposed sensing platform has been also successfully demonstrated the practical application of detecting UO22+, indicating that the developed method has the potential applications and can open up a new avenue for highly sensitive detection of UO22+ in environmental monitoring.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []