Identification of potential inhibitors for oncogenic target of dihydroorotate dehydrogenase using in silico approaches

2017 
Abstract Dihydroorotate dehydrogenase (DHODH) plays a major role in the rate limiting step of de novo pyrimidine biosynthesis pathway and it is pronounced as a novel target for drug development of cancer. The currently available drugs against DHODH are ineffective and bear various side effects. Three-dimensional structure of the targeted protein was constructed using molecular modeling approach followed by 100 ns molecular dynamics simulations. In this study, High Throughput Virtual Screening (HTVS) was performed using various compound libraries to identify pharmacologically potential molecules. The top four identified lead molecules includes NCI_47074, HitFinder_7630, Binding_66981 and Specs_108872 with high docking score of −9.45, -8.29, -8.04 and −8.03 kcal/mol and the corresponding binding free energy were −16.25, -56.37, -26.93 and −48.04 kcal/mol respectively. Arg122, Arg185, Glu255 and Gly257 are the key residues found to be interacting with the ligands. Molecular dynamics simulations of DHODH-inhibitors complexes were performed to assess the stability of various conformations from complex structures of Tt DHODH. Furthermore, stereoelectronic features of the ligands were explored to facilitate charge transfer during the protein-ligand interactions using Density Functional Theoretical approach. Based on in silico analysis, the ligand NCI_47074 ((2Z)-3-({6-[(2Z)-3-carboxylatoprop-2-enamido]pyridin-2-yl}carbamoyl)prop-2-enoate) was found to be the most potent lead molecule which was validated using energetic and electronic parameters and it could serve as a template for designing effective anticancerous drug molecule.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    5
    Citations
    NaN
    KQI
    []