Gab2, via PI-3K, Regulates ARF1 in FcεRI-Mediated Granule Translocation and Mast Cell Degranulation

2011 
Mast cells are major players in allergic responses. IgE-dependent activation through FceR leads to degranulation and cytokine production, both of which require Gab2. To clarify how the signals diverge at Gab2, we established Gab2 knock-in mice that express Gab2 mutated at either the PI3K or SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) binding sites. Examination of these mutants showed that both binding sites were required for the degranulation and anaphylaxis response but not for cytokine production or contact hypersensitivity. Furthermore, the PI3K, but not the SHP2, binding site was important for granule translocation during degranulation. We also identified a small GTPase, ADP-ribosylation factor (ARF)1, as the downstream target of PI3K that regulates granule translocation. FceRI stimulation induced ARF1 activation, and this response was dependent on Fyn and the PI3K binding site of Gab2. ARF1 activity was required for FceRI-mediated granule translocation. These data indicated that Fyn/Gab2/PI3K/ARF1-mediated signaling is specifically involved in granule translocation and the anaphylaxis response.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    33
    Citations
    NaN
    KQI
    []