C57BL/6 substrain differences in inflammatory and neuropathic nociception and genetic mapping of a major quantitative trait locus underlying acute thermal nociception

2018 
Sensitivity to different pain modalities has a genetic basis that remains largely unknown. Employing closely related inbred mouse substrains can facilitate gene mapping of nociceptive behaviors in preclinical pain models. We previously reported enhanced sensitivity to acute thermal nociception in C57BL/6J (B6J) versus C57BL/6N (B6N) substrains. Here, we expanded on nociceptive phenotypes and observed an increase in formalin-induced inflammatory nociceptive behaviors and paw diameter in B6J versus B6N mice (Charles River Laboratories). No strain differences were observed in mechanical or thermal hypersensitivity or in edema following the Complete Freunds Adjuvant (CFA) model of inflammatory pain, indicating specificity in the inflammatory nociceptive stimulus. In the chronic nerve constriction injury (CCI), a model of neuropathic pain, no strain differences were observed in baseline mechanical threshold or in mechanical hypersensitivity up to one month post-CCI. We replicated the enhanced thermal nociception in the 52.5 degrees Celsius hot plate test in B6J versus B6N mice from The Jackson Laboratory. Using a B6J x B6N-F2 cross (N=164), we mapped a major quantitative trait locus (QTL) underlying hot plate sensitivity to chromosome 7 that peaked at 26 Mb (LOD=3.81, p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    1
    Citations
    NaN
    KQI
    []