Investigation of the reaction rates between uranium and liquid aluminum
1995
A limited study consisting of scoping experiments was carried out to determine if a uranium-niobium alloy was weakly or strongly resistant to penetration by liquid aluminum alloy 6061. Our investigation was limited to temperatures between 700{degrees}and 900{degrees}C and carried out using small cylindrical coupons of U-6wt.%Nb and unalloyed U in unsaturated molten aluminum and aluminum alloy 6061 baths. The results indicate that indeed, significant dissolution of uranium into molten aluminum occurs and in relatively short times. The diameters of U-6wt.%Nb test cylinders immersed in unsaturated Al-6061 decreased linearly with time at 700{degrees}C, 800{degrees}C, and 900{degrees}C at rates of 1.14 mm/h, 3.0 mm/h, and 3.5 mm/h, respectively. However, we have found that the reaction rates were significantly reduced by the alloying elements niobium and magnesium. These results suggest that a more detailed investigation could lead to a predictive capability for control of these reaction rates. In unalloyed U, the rate of U dissolution increased by up to a factor of ten relative to that in U- 6wt.%Nb. In both materials, the dissolution of the U core was found to occur by advance of a continuous intermetallic layer, which redissolves into the unsaturated liquid Al bath. The Nb additions resulted in the formation of a thick transition layer composed of intermetallic and U-saturated liquid. In unalloyed U, however, the transition layer was largely reduced in thickness, allowing unsaturated liquid adjacent to the continuous intermetallic layer. Another important variable identified was the influence of surface condition on interface reactivity. At 900{degrees}C, liquid attack was completely absent over large regions of U-6wt.% Nb samples immersed in Al-6061. Surface analysis by EDX identified the presence of up to 24 at.% Mg in unattacked areas.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI