A new microtelesensor chip for meteorology
1997
A new technology exploiting commercial, micro-sensors developed for atomic force microscopy offers breakthrough capability in high accuracy wireless sensors for meteorological measurements. Historically sensors used in air-borne and buoy-based platforms required compromises in performance to achieve the low-weight and low power requirements of the mobile platforms. Recent innovations in microelectromechanical systems (MEMS) provided opportunities to reduce size, weight, and power requirements but each sensor required a specially fabricated device with inherent calibration, repeatability, and traceability problems. This new approach allows identical sensors to be fabricated on the same semiconductor substrate as the conditioning electronics and the telemetry components. Exploiting semiconductor fabrication technology offers the potential to reduce fabrication costs to a few dollars per component. Sensing humidity, temperature and pressure have been demonstrated with plans for meteorological deployment scheduled for later in 1997. Cost, reliability, size, power consumption, and accuracy are key factors in the deployment of advanced meteorological sensor arrays. ORNL is actively integrating the sensing technologies, electronic processing, and telemetry that build a family of sensors with multiple-input capabilities. One of the key elements in ORNL`s sensor technology is coated microcantilever arrays, which form a powerful universal platform for multiple physical and chemical measurements. Telemetry is also beingmore » developed to add robust spread-spectrum data transmission capabilities to the necessary signal processing electronics. In collaboration with the NOAA Atmospheric Turbulence and Diffusion Lab, a chip-level temperature/humidity module with onboard telemetry is slated for demonstration later in 1997. Future additions would include sensors for atmospheric pressure, wind velocity, turbulence measurement, and radiometry.« less
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
9
References
1
Citations
NaN
KQI