Pinus nigra pine derived hierarchical carbon foam for high performance supercapacitor applications

2020 
Abstract Biomass comprises an attractive source of carbon materials for energy conversion and storage applications, because it provides a low cost and sustainable approach for the production of carbon-based electrode materials at large scale. Here, we demonstrate the preparation of a three-dimensional carbon foam (3DCF) from a bio-renewable Pinus nigra pine, using a chemical degradation method followed by two simple carbonization steps in presence of argon gas. The as-prepared 3DCF in supercapacitor electrode shows high scan rate capability up to 10 V s−1, specific capacitance of 165 F g−1 at the specific current of 3.3 A g−1 in 6 M KOH electrolyte in three-electrode cell configuration, and retains 69.6% of its initial capacitance when the specific current increased to 13.3 A g−1. Furthermore, a 3DCF based symmetrical two-electrode cell was constructed, that shows a satisfactory specific energy of 6.6 Wh kg−1 at the specific power of 2.3 kW kg−1, while maintaining the specific energy of about 50% at the high specific power of 7.3 kW kg−1 under an operating voltage of 1.4 V in 2 M LiClO4 aqueous electrolyte. These results reveal a sustainable and low-cost electrode fabrication for high performance supercapacitor applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    10
    Citations
    NaN
    KQI
    []