Design and analysis of a 2-DOF RFM for the mirror sub-assembly (MSA) of ICF facility

2016 
This paper presents the design of a 2 degree-of-freedom (DOF) rotation flexure mechanism (RFM) that could be utilized as the pivot for the mirror sub-assembly (MSA) of transport mirrors in the target area of inertial confinement fusion (ICF) laser systems. The hybrid spring system is established as the analytical model of the 2-DOF RFM. With the suitable matrix in coordinate transformation, the overall compliance matrix is developed to reveal the compliance property of the mechanism and the compliance equations are obtained. The analytical results obtained from the compliance equations are validated by means of finite element analysis (FEA) with the accuracy of 1%. The compliance property and design tradeoffs of the 2-DOF RFM are discussed with the compliance equations. The 2-DOF RFM for the MSA of transport mirrors of ShenGuangIII (SGIII) facility is designed and optimized. Then, the MSA is modeled and analyzed by FEA. The analysis result shows that the 2-DOF RFM is feasible for the MSA design.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    0
    Citations
    NaN
    KQI
    []