Open-path remote sensing for multi-species gas detection using a broadband optical parametric oscillator

2020 
We demonstrate path-integrated simultaneous concentration measurements of water, methane and ethane, measuring spectra across the 3.1–3.5-μm range using 0.05 cm-1 resolution Fourier-transform spectroscopy in-line with an ultrafast optical parametric oscillator and a simple, non-compliant target. Illumination spectra were extracted from a fitting procedure which simultaneously minimized the rms error between the experimental spectrum and a synthetic spectrum calculated from the envelope and a fitted mixture of PNNL or HITRAN absorbance data for water, methane and ethane. Simultaneous methane, ethane and water measurement at 30-m range were initially performed. Indoor measurements launched light from the OPO through a 20-cm-long gas cell containing a 1.5±0.15% ethane-in-air mixture. Light was reflected from a rough Al-foil target. Best-fit concentrations were determined to be 1.15% (water), 1860 ppb (methane) and 1.37 % (ethane). The methane background value is consistent with reported ambient levels. Respective water and ethane values were consistent with the ambient relative humidity. The second experiment demonstrated real-time methane emission measurement at 70-m range. A 2% methane:air mix was released for 100 seconds at a rate of 103 μgs-1 at a distance of 65 m from the OPO. The signal was recorded from a simple target of rough aluminum foil situated 70 m from the OPO, with the beam passing near the emission point. This work demonstrates our ability to extract concentration data from a single spectrum with no need for averaging, which provides a real-time and quantitative monitoring capability.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []