On kernel-based estimation of conditional Kendall's tau: finite-distance bounds and asymptotic behavior

2019 
We study nonparametric estimators of conditional Kendall's tau, a measure of concordance between two random variables given some covariates. We prove non-asymptotic pointwise and uniform bounds, that hold with high probabilities. We provide "direct proofs" of the consistency and the asymptotic law of conditional Kendall's tau. A simulation study evaluates the numerical performance of such nonparametric estimators. An application to the dependence between energy consumption and temperature conditionally to calendar days is finally provided.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    5
    Citations
    NaN
    KQI
    []