Enhanced CO2 Methanation Reaction in C1 Chemistry over a Highly Dispersed Nickel Nanocatalyst Prepared Using the One-Step Melt-Infiltration Method

2020 
The Paris Agreement requires the world to put the best efforts to reduce CO2 emissions, due to the global warming problems. As a promising technology corresponding to this greenhouse gas treatment, the CO2 methanation process a.k.a power to gas (PtoG), which catalytically converts CO2 into methane, has been in the limelight. To develop an efficient catalytic process, it is necessary to design a low-cost and high-efficiency catalyst for high CO2 conversion and CH4 selectivity. In this study, we have developed Ni/γ-Al2O3 catalysts by the one-step melt-infiltration method, where both aging and calcination are done in one pot. For enhancement of the catalytic activity and selectivity, sufficient Ni content (>25 wt %) and a high dispersion (<10 nm) are simultaneously required. Thus, the aging conditions of the melt-infiltration methods, e.g., time and temperature, were optimized for the high dispersion with sufficient Ni content (15–50 wt %). The catalytic performance tests were carried out under atmospheric pressure, 275 to 400 °C and gas hourly velocity (GHSV) = 25,000 h−1. And the various characteristic analyses (Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), H2-chemisorption, temperature programmed reduction (TPR), etc.) were performed to confirm the effects on the catalytic performance. As a result, based on the experiments and the characterization data, the 30 wt %-Ni catalyst (Ni particles size = 11 nm) showed the best CO2 conversion at 300 °C and the 20 wt % one having the highest Ni dispersion (Ni particles size = 8.8 nm), which showed the best intrinsic reaction rate and CH4 selectivity in the entire temperature range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    3
    Citations
    NaN
    KQI
    []