Controlled Synthesis of CuS/TiO2 Heterostructured Nanocomposites for Enhanced Photocatalytic Hydrogen Generation through Water Splitting

2018 
Photocatalytic hydrogen (H2) generation through water splitting has attracted substantial attention as a clean and renewable energy generation process that has enormous potential in converting solar-to-chemical energy using suitable photocatalysts. The major bottleneck in the development of semiconductor-based photocatalysts lies in poor light absorption and fast recombination of photogenerated electron–hole pairs. Herein we report the synthesis of CuS/TiO2 heterostructured nanocomposites with varied TiO2 contents via simple hydrothermal and solution-based process. The morphology, crystal structure, composition, and optical properties of the as-synthesized CuS/TiO2 hybrids are evaluated in detail. Controlling the CuS/TiO2 ratio to an optimum value leads to the highest photocatalytic H2 production rate of 1262 μmol h–1 g–1, which is 9.7 and 9.3 times higher than that of pristine TiO2 nanospindles and CuS nanoflakes under irradiation, respectively. The enhancement in the H2 evolution rate is attributed to i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    93
    Citations
    NaN
    KQI
    []