Relativistic supernova 2009bb exploded close to an atomic gas cloud

2018 
The potential similarity of the powering mechanisms of relativistic SNe and GRBs allowed us to make a prediction that relativistic SNe are born in environments similar to those of GRBs, that is, ones which are rich in atomic gas. Here we embark on testing this hypothesis by analysing the properties of the host galaxy NGC 3278 of the relativistic SN 2009bb. This is the first time the atomic gas properties of a relativistic SN host are provided and the first time resolved 21 cm-hydrogen-line (HI) information is provided for a host of an SN of any type in the context of the SN position. We obtained radio observations with ATCA covering the HI line, and optical integral field unit spectroscopy observations with MUSE. The atomic gas distribution of NGC 3278 is not centred on the optical galaxy centre, but instead around a third of atomic gas resides in the region close to the SN position. This galaxy has a few times lower atomic and molecular gas masses than predicted from its SFR. SN 2009bb exploded close to the region with the highest SFR density and the lowest age (~5.5 Myr, corresponding to the initial mass of the progenitor star ~36 Mo). As for GRB hosts, the gas properties of NGC 3278 are consistent with a recent inflow of gas from the intergalactic medium, which explains the concentration of atomic gas close to the SN position and the enhanced SFR. Super-solar metallicity at the position of the SN (unlike for most GRBs) may mean that relativistic explosions signal a recent inflow of gas (and subsequent star formation), and their type (GRBs or SNe) is determined either i) by the metallicity of the inflowing gas, so that metal-poor gas results in a GRB explosion and metal-rich gas results in a relativistic SN explosion without an accompanying GRB, or ii) by the efficiency of gas mixing, or iii) by the type of the galaxy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    196
    References
    5
    Citations
    NaN
    KQI
    []