Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid

2018 
Abstract The emerging mixed contamination of antibiotics and microplastics in greenhouse soil has made the control of antibiotic resistant gene (ARG) transmission a novel challenge. In this work, surfactant sophorolipid was applied to enhance the dissipation of tetracycline (TC) and tet genes in the presence of microplastics in greenhouse soil. During 49 days of incubation, soil bacteria and phages were both found to be the crucial reservoirs of ARGs. Meanwhile, microplastic’s presence significantly inhibited the dissipation of TC and ARGs in the soil. However, sophorolipid application was proved to outweigh the negative impact caused by microplastic existence, and lead to the highest dissipation of soil TC and ARGs. Significant positive correlation was detected between the dissipation rate of water-soluble and exchangeable TC content and bacteria/phage co-mediated ARG levels. This also held true between the two fractions of soil TC and the ratio of ARG level in the bacteria to that in the phages (B ARGs /P ARGs ). The opposite impacts of microplastic presence and sophorolipid amendment on the TC/ARG dissipation found in this work provides new information for understanding ARG transmission between bacteria and phages in the mixed contaminated greenhouse soil.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    70
    Citations
    NaN
    KQI
    []