A Higher-Dimensional Homologically Persistent Skeleton

2019 
Abstract Real data is often given as a point cloud, i.e. a finite set of points with pairwise distances between them. An important problem is to detect the topological shape of data – for example, to approximate a point cloud by a low-dimensional non-linear subspace such as an embedded graph or a simplicial complex. Classical clustering methods and principal component analysis work well when data points split into good clusters or lie near linear subspaces of a Euclidean space. Methods from topological data analysis in general metric spaces detect more complicated patterns such as holes and voids that persist for a large interval in a 1-parameter family of shapes associated to a cloud. These features can be visualized in the form of a 1-dimensional homologically persistent skeleton, which optimally extends a minimum spanning tree of a point cloud to a graph with cycles. We generalize this skeleton to higher dimensions and prove its optimality among all complexes that preserve topological features of data at any scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []