Association between the Herpes Simplex Virus-1 DNA Polymerase and Uracil DNA Glycosylase

2010 
Herpes simplex virus-1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery and other enzymes involved in DNA transactions. We recently reported that the HSV-1 DNA polymerase catalytic subunit (UL30) exhibits apurinic/apyrimidinic and 5′-deoxyribose phosphate lyase activities. Moreover, UL30, in conjunction with the viral uracil DNA glycosylase (UL2), cellular apurinic/apyrimidinic endonuclease, and DNA ligase IIIα-XRCC1, performs uracil-initiated base excision repair. Base excision repair is required to maintain genome stability as a means to counter the accumulation of unusual bases and to protect from the loss of DNA bases. Here we show that the HSV-1 UL2 associates with the viral replisome. We identified UL2 as a protein that co-purifies with the DNA polymerase through numerous chromatographic steps, an interaction that was verified by co-immunoprecipitation and direct binding studies. The interaction between UL2 and the DNA polymerase is mediated through the UL30 subunit. Moreover, UL2 co-localizes with UL30 to nuclear viral prereplicative sites. The functional consequence of this interaction is that replication of uracil-containing templates stalls at positions −1 and −2 relative to the template uracil because of the fact that these are converted into non-instructional abasic sites. These findings support the existence of a viral repair complex that may be capable of replication-coupled base excision repair and further highlight the role of DNA repair in the maintenance of the HSV-1 genome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    36
    Citations
    NaN
    KQI
    []