Deciphering key processes controlling rainfall isotopic variability during extreme tropical cyclones

2019 
The Mesoamerican and Caribbean (MAC) region is characterized by tropical cyclones (TCs), strong El Nino-Southern Oscillation events, and climate variability that bring unique hazards to socio-ecological systems. Here we report the first characterization of the isotopic evolution of a TC (Hurricane Otto, 2016) in the MAC region. We use long-term daily rainfall isotopes from Costa Rica and event-based sampling of Hurricanes Irma and Maria (2017), to underpin the dynamical drivers of TC isotope ratios. During Hurricane Otto, rainfall exhibited a large isotopic range, comparable to the annual isotopic cycle. As Hurricane Otto organized into a Category 3, rapid isotopic depletion coupled with a decrease in d-excess indicates efficient isotopic fractionation within ~200 km SW of the warm core. Our results shed light on key processes governing rainfall isotope ratios in the MAC region during continental and maritime TC tracks, with applications to the interpretation of paleo-hydroclimate across the tropics. “Reconstruction of precipitation variability from oxygen isotopes in the Mesoamerican and Caribbean region is made difficult by the occurrence of tropical cyclones. Here, the isotopic evolution of a tropical cyclone is studied in detail which helps disentangle the key processes governing rainfall isotope variability in the region.”
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    20
    Citations
    NaN
    KQI
    []