A q-binomial extension of the CRR asset pricing model
2021
We propose an extension of the Cox-Ross-Rubinstein (CRR) model based on q-binomial (or Kemp) random walks, with application to default with logistic failure rates. This model allows us to consider time-dependent switching probabilities varying according to a trend parameter, and it includes tilt and stretch parameters that control increment sizes. Option pricing formulas are written using q-binomial coefficients, and we study the convergence of this model to a Black-Scholes type formula in continuous time. A convergence rate of order O(1/N) is obtained when the tilt and stretch parameters are set equal to one.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI