Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments

2019 
Abstract Environmental microbiota play essential roles in the maintenance of many biogeochemical processes, including nutrient cycling and pollutant degradation. They are also highly susceptible to changes in environmental stressors, with environmental pollutants being key disruptors of microbial dynamics. In the present study, a scientific cruise was launched on July 2017 around Pearl River Delta, a suitable studying site for perfluoroalkyl substances (PFASs) in the wake of the severe PFAS pollution. Surface sediment samples were collected from 18 representative stations to assess PFAS accumulation and profile microbial community. PFAS concentrations ranged from 24.2 to 181.4 pg/g dry weight in sediment, and perfluorooctanesulfonic acid (PFOS) was the dominant homologue. The concentrations of PFAS homologues in the current study were much lower than those reported in previous studies, implying effective management and control of pollution from PFAS-related industries. 16S rRNA gene amplicon sequencing revealed that Proteobacteria was the dominant phylum, while nitrogen-metabolizing Nitrosopumilus and sulfate-reducing Desulfococcus genera were the most abundant. Variations in microbial communities among sampling stations were mainly due to the differences in abundances of Escherichia , Nitrosopumilus , and Desulfococcus . The outbreak of Escherichia bacteria at specific coastal stations potentially indicated the discharge of fecal matter into the marine environment. Dissolved oxygen (DO) in bottom seawater significantly influenced the structure of microbial communities in the sediment, while current study failed to observe significant effects from PFAS pollutants. Positive correlations were found between DO and sulfate-reducing bacteria in Desulfococcus and GOUTA19 genera. Overall, this study explored relationships between environmental variables (e.g., PFAS pollutants) and sediment bacteria. Biogeochemical parameters significantly influenced the structure and composition of microbial communities in sediment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    25
    Citations
    NaN
    KQI
    []