Effects of biodegradable chelator combination on potentially toxic metals leaching efficiency in agricultural soils

2019 
Abstract Soil washing with chelators, a viable method for treating soils contaminated with potentially toxic metals, has drawn increasing attentions. The objective of this study was to determine a new generation of mixed degradable chelating agents from N, N-bis (carboxymethyl) glutamic acid (GLDA), [S, S]-stereoisomer of ethyleneiaminedisucc--inic acid (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), and to evaluate its effectiveness and feasibility to reduce toxic metals contamination in two different agricultural soils. A comparative leaching test conducted on the four individual degradable chelating agents showed that the capacity of single chelator in mobilizing copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) varied significantly. Using a combination of GLDA and NTA was more advantageous than using a single chelating agent in extracting potentially toxic metals. The removal efficiencies of Cu, Zn, Cd, and Pb reached 38.2, 9.8, 71.4, and 19.5% for soil 1, and 25.0, 5.2, 59.7, and 18.5% for soil 2, respectively, at mixed chelator (MC) concentrations of 3 mmol/L (GLDA) and 2 mmol/L (NTA), pH of 6.0, and a contact time of 4.0 h. The effects of washing conditions, chelator concentration, pH values, and contact time on the removal efficiencies of target toxic metals were investigated. The results showed that the combined chelating agent has a lower pH dependence, making it feasible for a wider range of applications. The effects of the chelating agents on the morphological distribution of potentially toxic metals and the soil enzyme activity before and after the treatments were also studied. After washing, the content of the water-soluble, acid-soluble, reducible, and oxidizable target metals showed a certain degree of decrease. Although the activities of catalase, urease, and invertase appeared to be inhibited during a short period of time, their activities were stimulated and later promoted with the degradation of the chelating agent. In general, the chelating agent combination has a great potential for toxic metals leaching.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    17
    Citations
    NaN
    KQI
    []