Targeted ovarian cancer treatment: the TRAILs of resistance.

2012 
Ovarian cancer (OC) is the leading cause of death from gynecological malignancies. Although most patients respond to the initial therapy when presenting with advanced disease, only 10-15% maintain a complete response following first-line therapy. Recurrence defines incurable disease in most cases. Despite improvements with conventional chemotherapy combinations, the overall cure rate remained mostly stable over the years. Increased long-term survival in OC patients will only be achieved through a comprehensive understanding of the basic mechanisms of tumor cell resistance. Such knowledge will translate into the development of new targeted strategies. In addition, because OC is considered to be a heterogeneous group of diseases with distinct gene expression profiles, it is likely that different approaches to treatment for distinct sub-types will be required to optimize response. One of the new promising anti-cancer therapies is the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL has the ability to selectively induce apoptosis in tumor cells with little toxicity to normal cells. Death receptor ligands such as TRAIL rely on the activation of the apoptotic signaling pathway to destroy tumor cells. TRAIL induces the formation of a pro-apoptotic death-inducing signaling complex (DISC) via its death receptors, TRAIL receptor 1 (TRAIL R1) and TRAIL receptor 2 (TRAIL R2). The formation of the DISC activates caspase-8 which requires further signal amplification through the mitochondrial pathway for an efficient activation of effector caspases in OC cells. The initial enthusiasm for TRAIL has been hampered by accumulating data demonstrating TRAIL resistance in various tumor types including OC cells. There is, therefore, a need to identify markers of TRAIL resistance, which could represent new hits for targeted therapy that will enhance TRAIL efficacy. In addition, the identification of patients that are more likely to respond to TRAIL therapy would be highly desirable. In this review, we discuss the different molecular and cellular mechanisms leading to TRAIL resistance in OC. In particular, we address the mechanisms involved in intrinsic, acquired and environment-mediated TRAIL resistance, and their potential implication in the clinical outcome.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    135
    References
    39
    Citations
    NaN
    KQI
    []