Sub-5 nm Ultrasmall Metal–Organic Framework Nanocrystals for Highly Efficient Electrochemical Energy Storage

2018 
Synthesis of ultrasmall metal–organic framework (MOF) nanoparticles has been widely recognized as a promising route to greatly enhance their properties but remains a considerable challenge. Herein, we report one facile and effective spatially confined thermal pulverization strategy to successfully transform bulk Co-MOF particles into sub-5 nm nanocrystals encapsulated within N-doped carbon/graphene (NC/G) by using conducting polymer coated Co-MOFs/graphene oxide as precursors. This strategy involves a feasible mechanism: calcination of Co-MOFs at proper temperature in air induces the partial thermal collapse/distortion of the framework, while the uniform coating of a conducting polymer can significantly improve the decomposition temperature and maintain the component stability of Co-MOFs, thus leading to the pulverization of bulk Co-MOF particles into ultrasmall nanocrystals without oxidation. The pulverization of Co-MOFs significantly increases the contact area between Co-MOFs with electrolyte and shorte...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    76
    Citations
    NaN
    KQI
    []