Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran
2015
The purpose of current study is to produce groundwater qanat potential map using frequency ratio (FR) and Shannon's entropy (SE) models in the Moghan watershed, Khorasan Razavi Province, Iran. The qanat is basically a horizontal, interconnected series of underground tunnels that accumulate and deliver groundwater from a mountainous source district, along a water- bearing formation (aquifer), and to a settlement. A qanat locations map was prepared for study area in 2013 based on a topographical map at a 1:50,000-scale and extensive field surveys. 53 qanat locations were detected in the field surveys. 70 % (38 locations) of the qanat locations were used for groundwater potential mapping and 30 % (15 locations) were used for validation. Fourteen effective factors were considered in this investigation such as slope degree, slope aspect, altitude, topographic wetness index (TWI), stream power index (SPI), slope length (LS), plan curvature, profile curvature, distance to rivers, distance to faults, lithology, land use, drainage density, and fault density. Using the above conditioning factors, groundwater qanat potential map was generated implementing FR and SE models, and the results were plotted in ArcGIS. The predictive capability of frequency ratio and Shannon's entropy models were determined by the area under the relative operating characteristic curve. The area under the curve (AUC) for frequency ratio model was calculated as 0.8848. Also AUC for Shannon's entropy model was 0.9121, which depicts the excellence of this model in qanat occurrence potential estimation in the study area. So the Shannon's entropy model has higher AUC than the frequency ratio model. The produced groundwater qanat potential maps can assist planners and engineers in groundwater development plans and land use planning.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
155
Citations
NaN
KQI