Design of a multistable composite laminate by variable cross-section method and applying the displacement constraint

2018 
Abstract This paper presents a multistable variable cross-section laminate (MVCL), which is designed by applying the displacement constraint at the two opposing ends of the laminate. A theoretical model describing the MVCL as rigid bars connected with compliant hinges is built to predict the equilibrium configurations and snap-through loads of the MVCL. The snap-through process of the multistable structure is investigated via experiment and finite element analysis (FEA). Subsequently, the theoretical model is improved by simplifying the middle segment of the MVCL as an elastic beam. Good agreement is obtained between the experimental test, FEA, and improved theoretical model results. It is shown that the current approach can be successfully applied to predict the equilibrium configurations and snap-through loads of an MVCL. The snap-through loads can be adjusted by changing the middle segment length of an MVCL.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    9
    Citations
    NaN
    KQI
    []