Optimization and Finite Element Modelling of Tool Wear in Milling of Inconel 625 Superalloy

2020 
This study focuses on optimization of cutting conditions and numerical analysis of flank wear in milling of Inconel 625 superalloy using PVD AlTiN and CVD TiCN/Al2O3/TiN-coated carbide inserts. The milling experiments have been performed in CNC vertical machining centre according to Taguchi L18 orthogonal array. Finite element modelling of tool wear was performed using Deform 3D software. Analysis of variance was utilized to define the influences of the milling conditions on Vb. The results showed that the feed rate (with 41.5% contribution rate) is the most important parameter affecting Vb. The linear and quadratic regression analyses were used to estimate the results of the test. The regression analysis results showed that the estimated Vb values achieved by the quadratic regression model were more effective compared to the linear regression model. Statistical results revealed that the Taguchi method was successful to define optimum cutting parameters in the milling of Inconel 625.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []