Graphene-supported tunable bidirectional terahertz metamaterials absorbers.

2021 
Based on asymmetric graphene ellipses, the tunable propagation characteristics of metamaterial absorber (MMA) have been investigated in the THz region. Two distinct absorption peaks of 84% and 90% are observed at 1.06 THz and 1.67 THz, respectively. Besides a high Q factor exceeding 20, the Fano resonance can also be modulated in a wide range (e.g., the frequency modulation depth reaches more than 43.8% if the Fermi energy level changes in the range of 0.2–1.0 eV). Additionally, a bidirectional THz MMA is achieved by replacing the metal substrate with a uniform graphene layer. If the terahertz wave is incident in the forward direction, the proposed graphene double stripe microstructure shows a typical MMA with its absorption reaching 88%. On the other hand, if the terahertz wave is incident in the reverse direction, the graphene double stripe microstructure behaves as a reflective modulator, and its amplitude and frequency MD will reach 60% and 85%. These results contribute to the design of tunable THz devices, such as filters, absorbers, and modulators.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    1
    Citations
    NaN
    KQI
    []