Complex formation between ribosomal protein S1, oligo-and polynucleotides: chain length dependence and base specificity

1977 
Abstract In order to examine the nature of the complex formation between the ribosomal protein S1 and nucleic acids three methods were used: Inhibition of the reaction of n-ethyl[2.3 14C]-maleimide with S1 by the addition of oligonucleotides; adsorption of the complexes to nitrocellulose filters; and equilibrium dialysis. The complex formation is Mg2+ dependent at low salt concentrations and becomes Mg2+ independent at an ionic strength greater than 90 mM. Oligouridylates of increasing chain length reach an optimal KA of 3-3-10(7) M-1 at a chain length of n=13-14. Protein S1 contains one binding site for long chain oligouridylates, such as U12, and the standard-free-energy change on binding caused by one Pu increment is 0.41 kcal/mol, when n varies between five and fourteen. Complex formation is insensitive to the capacity of the homopolynucleotide bases to form hydrogen bonds. Homopolynuceotides, however, showing a Tm less than 250 in the buffer system used show an increased affinity for S1 compared to poly(A) and poly(C) (Tm greater than 40 degrees). The data are discussed with respect to the proposed binding of protein S1 to the 3-terminal end of the 16S RNA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    34
    Citations
    NaN
    KQI
    []