GLP-1-related proteins attenuate the effects of mitochondrial membrane damage in pancreatic β cells

2014 
Abstract Glucagon-like peptide (GLP)-1 analog based therapies are used not only for their insulinotropic effects, but also for their pleiotropic effects that improve pancreatic β cell function. Liraglutide is a long acting derivative of human GLP-1(7–37), which is a cleavage product encompassing amino acids 7–37 of GLP-1. In this study, we examined whether Liraglutide treatment restore the glucose-stimulated mitochondrial response of β cells with chemically induced mitochondrial damage. We tested three GLP-1-related proteins: human GLP-1(1–37), GLP-1(7–37) and Liraglutide. To measure changes of the mitochondrial pH quantitatively in real-time, we have developed a bioengineered β cell line. We generated a mitochondrial damaged model by treating β cells with ethidium bromide (EtBr; 0.5 or 1 μg/mL for 48 h). EtBr treatment reduced the response to 25 mM glucose in mitochondrial pH in a dose- and time-dependent manner. GLP-1(7–37) (100 nM) enhanced the response of mitochondria to glucose stimulation in undamaged β cells. Preincubation with Liraglutide (1 nM) or GLP-1 (100 nM) for 3 h recovered the mitochondrial response to glucose in damaged β cells, however, GLP-1(7–37) (100 nM) did not. When GLP-1(7–37) was administered in stepwise increments (i.e., starting with 20 nM to reach 100 nM in 3 h), similar recovery of the mitochondrial function was observed. The results suggest that Liraglutide is effective to recover glucose-stimulated mitochondrial response in damaged β cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    11
    Citations
    NaN
    KQI
    []