Earth‐Abundant Tin Sulfide‐Based Photocathodes for Solar Hydrogen Production

2018 
Tin-based chalcogenide semiconductors, though attractive materials for photovoltaics, have to date exhibited poor performance and stability for photoelectrochemical applications. Here, a novel strategy is reported to improve performance and stability of tin monosulfide (SnS) nanoplatelet thin films for H2 production in acidic media without any use of sacrificial reagent. P-type SnS nanoplatelet films are coated with the n-CdS buffer layer and the TiO2 passivation layer to form type II heterojunction photocathodes. These photocathodes with subsequent deposition of Pt nanoparticles generate a photovoltage of 300 mV and a photocurrent density of 2.4 mA cm−2 at 0 V versus reversible hydrogen electrode (RHE) for water splitting under simulated visible-light illumination (λ > 500 nm, Pin = 80 mW cm−2). The incident photon-to-current efficiency at 0 V versus RHE for H2 production reach a maximum of 12.7% at 575 nm with internal quantum efficiency of 13.8%. The faradaic efficiency for hydrogen evolution remains close to unity after 6000 s of illumination, confirming the robustness of the heterojunction for solar H2 production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    19
    Citations
    NaN
    KQI
    []