Reliability of echocardiographic speckle-tracking derived bi-atrial strain assessment under different hemodynamic conditions
2017
The aim of this study was to assess intra- and inter-observer variability of left (LA) and right atrial (RA) strain indices obtained by two-dimensional speckle-tracking echocardiography (2D-STE) in a healthy group of individuals at low-altitude and after rapid ascent to high-altitude in order to provoke altered systemic and pulmonary hemodynamics otherwise seen in various cardiac diseases. Twenty healthy subjects underwent transthoracic echocardiography during a baseline examination at low-altitude (424 m) as well as 7, 20 and 44 h after arrival at high-altitude (4559 m). Atrial strain indices (i.e. reservoir, conduit and contractile strain) were determined off-line by two independent observers. Intra- and inter-observer reproducibility of variables was assessed by intra-class correlation coefficients (ICCs), coefficients of variation and Bland Altman plots. Heart rate, systemic blood pressure and pulmonary artery pressure increased significantly from low-altitude to the first examination at high-altitude. Intra-observer ICCs were ≥0.90 except for RA conduit strain with an ICC of 0.86. The mean intra-observer differences were small and limits of agreement of relative differences were narrow for all atrial strain parameters (<3 and <16%, respectively). Inter-observer ICCs (0.80–0.90), mean biases and limits of agreement (<4 and <20%, respectively) were greater than intra-observer results for all parameters. Intra- and inter-obserer ICCs for all atrial strain variables did not differ between low- and high-altitude. 2D-STE-derived bi-atrial strain indices have excellent intra- and moderate inter-observer reproducibility with no effect of high-altitude-induced hemodynamic changes on reliability results.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
28
References
5
Citations
NaN
KQI