Low effective electron mass InGaAs/InAlAs for high power terahertz quantum cascade lasers

2017 
Quantum cascade lasers (QCLs) are powerful sources of coherent radiation covering the frequency range from mid-infrared to terahertz. In the terahertz frequency range the active region is normally realized using a GaAs/Al x Ga 1−x As semiconductor heterostructure. This material system enables a variable conduction band offset by changing the Al-content in the barrier layers without introducing a significant lattice mismatch between the barrier and well material. In comparison to the standard GaAs-based material system, active regions based on material systems with a lower effective electron mass are highly beneficial for the design of terahertz QCLs as the optical gain increases for a lower effective electron mass [1]. Promising material systems are based on InGaAs or InAs with an effective electron mass of 0.043 and 0.023, respectively, compared to that of GaAs (0.067) [2, 3].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    0
    Citations
    NaN
    KQI
    []