Dansyl-appended CuII-complex-based nitroxyl (HNO) sensing with living cell imaging application and DFT studies

2019 
We introduce herein, a novel copper complex-based fluorescent probe [CuII(DQ468)Cl]+ that exhibits a significant fluorescence turn-on response towards nitroxyl (HNO) with high selectivity over other biological reactive oxygen, nitrogen and sulfur species, including nitric oxide (NO). A smart strategy, involving HNO-induced reduction of paramagnetic [CuII(DQ468)Cl]+ to diamagnetic [CuI(DQ468)]+ with concomitant fluorescence enhancement via a PET mechanism is focused here. This reduction-based strategy was also supported by X-band EPR response and mass spectroscopy. The metal free probe (DQ468) showed high affinity towards Cu2+ to form [CuII(DQ468)Cl]+ with a 0.091 μM detection limit, which subsequently enabled the detection of HNO in an organo-aqueous medium at biological pH (7.4) in the green wavelength region (λem = 543 nm) with a LOD of 0.41 μM. The ground-state geometries of DQ468, [CuII(DQ468)Cl]+ and [CuI(DQ468)]+ were optimized by DFT calculations, which revealed that the central metal ion in [CuII(DQ468)Cl]+ is in a distorted tetrahedral geometry with the C1 point group. Additionally, the negligible cytotoxicity and good biocompatibility make the developed probe useful for the in vitro detection of HNO.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    6
    Citations
    NaN
    KQI
    []