An effective technique for calibrating the intrinsic parameters of a vascular C-arm from a planar target

2006 
The real time recovery of the projection geometry is a fundamental issue in interventional navigation applications (e.g. guide wire reconstruction, medical augmented reality). In most works, the intrinsic parameters are supposed to be constant and the extrinsic parameters (C-arm motion) are deduced either from the orientation sensors of the C-arm or from other additional sensors (eg. optical and/or electro-magnetic sensors). However, due to the weight of the X-ray tube and the C-arm, the system is undergoing deformations which induce variations of the intrinsic parameters as a function of the C-arm orientation. In our approach, we propose to measure the effects of the mechanical deformations onto the intrinsic parameters in a calibration procedure. Robust calibration methods exist (the gold standard is the multi-image calibration ) but they are time consuming and too tedious to set up in a clinical context. For these reasons, we developed an original and easy to use method, based on a planar calibration target, which aims at measuring with a high level of accuracy the variation of the intrinsic parameters on a vascular C-arm. The precision of the planar-based method was evaluated by the mean of error propagation using techniques described in. 8 It appeared that the precision of the intrinsic parameters are comparable to the one obtained from the multi-image calibration method. The planar-based method was also successfully used to assess to behavior of the C-arm with respect to the C-arm orientations. Results showed a clear variation of the principal point when the LAO/RAO orientation was changed. In contrast, the intrinsic parameters do not change during a cranio-caudal C-arm motion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []