Expansion of CD26 positive fibroblast population promotes keloid progression

2017 
Abstract Background Keloid is a skin fibrosis disease that characterised by invasive growth of fibroblasts and aberrant deposition of extracellular matrix. Studies indicated that keloid fibroblasts (KFs) is a class of ‘activated’ fibroblasts, which show accelerated proliferation and excessive extracellular matrix formation as compared with normal fibroblasts (NFs). However, the mechanism underlying keloid fibroblasts dysfunction is still unknown. Objective To verify CD26 expression difference between KFs and NFs, and investigate the function of CD26 positive fibroblasts in keloid progression. Methods KFs and NFs were isolated from Keloid tissues and normal skin tissues respectively. Flow cytometry was performed to isolate CD26+/CD26- fibroblasts from KFs and NFs. Proliferation of different fibroblasts were analyzed by CCK8 assay and Ki 67 straining. Profibrotic phenotype difference was detected by qRT-PCR, western blot, ELISA and immunofluorescence. Scratching experiment and transwell assay were used to assess invasion ability of CD26+/CD26- fibroblasts. Diprotin A was used as a CD26 inhibitor to further investigated the function of CD26 fibroblasts in keloid disease. Result CD26 expression was increased in KFs, and the proportion of CD26+ fibroblasts was significantly increased in KFs. Cell viability analysis showed that CD26+ fibroblasts was more active in proliferation. Furthermore, the expression of profibrotic genes were increased in CD26+ fibroblasts, including TGF-β1, IGF-1, IL6, collagen 1, collagen 3 and fibronectin. And meanwhile, CD26+ fibroblasts showed stronger invasion ability as compared to CD26- fibroblasts. Moreover, Diprotin A significantly suppressed proliferation and extracellular matrix secretion of CD26+ fibroblasts isolated from keloid tissues. Conclusion Our findings suggest that CD26+ fibroblasts possess proliferation advantage in compare to CD26- fibroblasts, and the advantage caused expansion of CD26 positive fibroblast population promotes keloid progression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    21
    Citations
    NaN
    KQI
    []