Reduction of heat flux on divertor plates by remote radiative cooling in doublet III

1982 
Abstract Using a single null divertor configuration, heat flux intensity and its profile on the divertor plates as a function of plasma current and density were measured with an infrared camera and thermocouples. The vertical width of the heat flux on the divertor plates 2λ is ≈ 10 cm at the lower separatrix and is ≈ 5.5 cm at the upper separatrix. A diffusion coefficient D ⊥ which is obtained from the measurement of the diffusion length across the scrape-off field lines is roughly proportional to 1 B t and its magnitude is on the order of Bohm diffusion. The heat flux on the plates decreases by more than a factor of 5 with increasing electron density in the main plasma and is much smaller than that on the limiters in non-diverted plasmas. Only 3% of ohmic input power goes into the divertor plates at high density of the main plasma, while ≈ 20% goes in at low density. The decrease of heat flux is in good agreement with the increase of radiation loss in the divertor region. The heat flux on the divertor plates can be reduced by remote radiative cooling in high density discharges.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    5
    Citations
    NaN
    KQI
    []