Human Eosinophils Produce Biologically Active IL-12: Implications for Control of T Cell Responses

1998 
The present study assessed the capacity of eosinophils (EOS) to synthesize the cytokine IL-12. Blood-derived, highly purified human EOS from six atopic patients and two nonatopic individuals were treated in culture with IL-4, IL-5, granulocyte-macrophage CSF, IFN-γ, TNF-α, IL-1α, RANTES, and complement 5a, respectively. The expression of both IL-12 protein and mRNAs for the p35 and p40 IL-12 subunits was strongly induced in all donors by the Th2-like cytokines IL-4 and granulocyte-macrophage CSF and was also moderately induced by TNF-α and IL-1α. IL-5 treatment resulted in IL-12 synthesis in four atopic donors and one nonatopic donor, whereas IFN-γ induced IL-12 synthesis in only two atopic donors. In contrast, RANTES exclusively induced mRNA for the p40 subunit without detectable protein release, and complement 5a had no effect on IL-12 mRNA or protein expression. EOS-derived IL-12 was biologically active, because supernatants derived from IL-4-treated EOS superinduced the Con A-induced expression of IFN-γ by a human Th1-like T cell line. This activity was neutralized by anti-IL-12 Abs. In conclusion, EOS secrete biologically active IL-12 after treatment with selected cytokines, which mainly represent the Th2-like type. Consequently, EOS may promote a switch from Th2-like to Th1-like immune responses in atopic and parasitic diseases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    119
    Citations
    NaN
    KQI
    []