Cadmium phytoextraction from contaminated paddy soil as influenced by EDTA and Si fertilizer

2019 
The efficiency of heavy metal (HM) phytoextraction from contaminated soil directly depends on the pollutant bioavailability, which can be increased by some soil amendments. In field test, the impacts of soil-applied ethylenediaminetetraacetic acid (EDTA) and amorphous silicon dioxide (ASD) and foliar-applied monosilicic acid (MS) on cadmium (Cd) uptake by rice plants from contaminated paddy soil were investigated. Without EDTA, the solid or liquid Si materials reduced the Cd accumulation in the aboveground part of rice by 26 to 52%. If EDTA was applied, the Cd accumulation by plants was increased by 60 to 92%; however, the biomass was reduced by 16 to 35%. The combined application of Si-rich materials and EDTA provided enhanced plant tolerance to a negative influence of EDTA, while kept high Cd content in the rice stems and leaves. As a result, the Cd amounts extracted by the stems and leaves from the unit area of contaminated paddy soil were greater by 25 and 37% in comparison with those for only EDTA treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    1
    Citations
    NaN
    KQI
    []